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Abstract—In this paper, a novel sonoelastographic technique for estimating local shear velocities from propa-
gating shear wave interference patterns (termed crawling waves) is introduced. A relationship between the local
crawling wave spatial phase derivatives and local shear wave velocity is derived with phase derivatives estimated
using an autocorrelation technique. Results from homogeneous phantoms demonstrate the ability of sonoelas-
tographic shear velocity imaging to quantify the true underlying shear velocity distributions as verified using
time-of-flight measurements. Heterogeneous phantom results reveal the capacity for lesion detection and shear
velocity quantification as validated from mechanical measurements on phantom samples. Experimental results
obtained from a prostate specimen illustrated feasibility for shear velocity imaging in tissue. More importantly,
high-contrast visualization of focal carcinomas was demonstrated introducing the clinical potential of this novel
sonoelastographic imaging technique. (E-mail: hoyt@ece.rochester.edu) © 2007 Published by Elsevier Inc. on
behalf of the World Federation for Ultrasound in Medicine & Biology.

Key Words: Crawling waves, Elasticity imaging, Shear velocity estimation, Shear wave interference patterns,
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INTRODUCTION

Imaging the elastic properties of biological tissues has
become the focal point of many research efforts (Gao
et al. 1996; Ophir et al. 1999; Greenleaf et al. 2003). The
universal goal of these initiatives revolves around map-
ping some tissue mechanical property in an anatomically
meaningful manner to provide useful clinical informa-
tion. Since changes in tissue stiffness are typically indic-
ative of an abnormal pathologic process (Anderson and
Kissane 1977), imaging parameters related to tissue elas-
ticity may finally provide a gateway for differentiating
normal from abnormal tissues.

For nearly two decades, elasticity imaging research
has evolved into a diverse international endeavor with
the majority of the efforts being founded on either ultra-
sound or magnetic resonance imaging system platforms.
Ultrasound has the advantages of system mobility and
real-time capability. Although all ultrasound-based elas-
ticity imaging techniques are premised on the formation

of elastic deformations in tissue, significant differences
exist in the nature of the mechanical stimulus used to
induce tissue motion and the subsequent acquisition and
processing of tissue deformation data.

Vibrational sonoelastography is a tissue elasticity
imaging technique that estimates the amplitude response
of tissues under harmonic mechanical excitation using
ultrasonic Doppler techniques (Lerner et al. 1988). Due
to a mathematical relationship between particle vibra-
tional response and received Doppler spectral variance
(Huang et al. 1990), the amplitude of low frequency and
low amplitude shear waves propagating in tissue can be
visualized in real-time using sonoelastography to detect
regions of abnormal stiffness (Parker et al. 1998). Com-
pression elastography is another ultrasonic elasticity im-
aging technique that estimates soft tissue strain profiles
owing to a quasistatic compressive force (Ophir et al.
1991; O’Donnell et al. 1994). In this particular method,
strain is used as a surrogate for tissue stiffness; low tissue
strain regions indicate high stiffness and vice versa. In
contrast, acoustic radiation force-based methods utilize
focused acoustical energy to induce localized tissue de-
formation, in effect remotely palpating deep soft tissue
(Sugimoto et al. 1990). Using pulse echo ultrasound
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techniques, the elastic response of tissue following a high
energy, focused acoustic pulse is estimated using either
speckle tracking (Nightingale et al. 2001; Lizzi et al. 2003;
Bercoff et al. 2004) or Doppler techniques (Barannik et al.
2002). These approaches analyze the mechanical re-
sponse of tissue to acoustic radiation forces by imaging
either the temporal displacement and relaxation (function
of viscoelastic properties) at the focus or the spatial
propagation of induced shear waves (related to shear
modulus distribution). Transient elastography is another
elasticity imaging technique that functions by inducing
propagating shear waves using pulsed acoustic radiation
forces whereby tissue displacements are tracked using an
ultrafast ultrasound scanner (5 to 10,000 frames per s)
(Bercoff et al. 2004). Subsequently, tissue displacement
estimates are imaged allowing visualization of shear
waves as they propagate across the image plane. A
variant of radiation force-based elasticity imaging is
that termed vibro-acoustography (Fatemi et al. 1998;
Greenleaf et al. 2003). In this technique, a low frequency
(in the kHz range) dynamic radiation force is produced
by two confocal continuous-wave ultrasound beams
transmitting at offset frequencies. Since the oscillating
force vibrates the tissue at the focal region and produces
an acoustic emission, an image depicting the elastic
response is formed by spatially translating the focal point
within the object and collecting the resultant acoustic
emissions using a sensitive hydrophone.

In a recent discovery by Wu et al. (2004), it was
found that interfering shear waves could produce slowly
propagating interference patterns with an apparent veloc-
ity much less than (but proportional to) the underlying
true shear velocity. Termed crawling waves, they are
generated using a pair of mechanical sources vibrating at
slightly offset frequencies. More importantly, these shear
wave (interference) patterns can be visualized in real-
time using sonoelastographic imaging techniques. In
general, crawling wave images describe shear wave
propagation patterns and allow for estimation of the
spatial elastic properties in tissue, namely, shear velocity
distributions.

Utilizing a local frequency estimator (LFE), (Knuts-
son et al. 1994; Manduca et al. 1996), Wu et al. (2004)
showed that qualitative images describing shear velocity
distributions can in fact be generated from crawling
wave image sequences. One disadvantage to the LFE-
based approach to sonoelastographic crawling wave
analysis is that it requires amplitude normalization and
detrending to avoid spectral leakage artifacts and subse-
quent image degradation. Alternatively, McLaughlin et al.
(2006) have developed a technique whereby distinctive
features of the crawling waves are identified and arrival
times at points in the image plane are calculated. Since

these features move in accord with the underlying true
shear velocity distribution, quantitative estimates of local
shear velocity are obtained and imaged. Although pre-
liminary results using this approach in phantoms are
promising, the mathematical complexity currently rules
out real-time clinical applications.

In this paper, we expand the crawling wave phe-
nomena and introduce a novel shear velocity estimation
and imaging technique. Given a sonoelastographic
crawling wave image frame, a 1D kernel window is
translated across a region-of-interest in the direction of
shear wave propagation with local shear velocity esti-
mates computed using an autocorrelation-based algo-
rithm (as a function of spatial position). Upon complet-
ing this process for each range location, the resultant
image describes the 2D spatial shear velocity distribu-
tion. One of the main advantages of the novel shear
velocity estimation technique introduced in this paper
relates to computational simplicity. Due to the unde-
manding numerical structure, real-time sonoelasto-
graphic shear velocity imaging is deemed feasible.

The goal of this work was to present initial results
using this novel sonoelastographic shear velocity imag-
ing technique. Following a mathematical derivation of
the shear velocity estimation and imaging method, sim-
ulation results explain the trade-offs between various
system level and image processing parameters. Experi-
mental results in tissue-mimicking phantoms illustrate
the ability of this imaging technique to accurately de-
scribe the true shear velocity distributions. Lastly, exper-
imental results obtained from a prostate specimen intro-
duce feasibility for sonoelastographic shear velocity im-
aging in tissue.

THEORY

Fundamentals of tissue elasticity
We begin by expressing the wave motion equation

for a linear and isotropic medium in terms of the dis-
placements as:

E
2(1 ! v)

"2u! !
E

2(1 ! v)(1 # 2v)
" " · u! $ %

&2u!
&t2 , (1)

where E, v, %, u and t are the Young’s modulus, Poisson’s
ratio, mass density, displacement vector and time vari-
able, respectively. Equation 1 can be decomposed into
two decoupled motion equations, one governing longi-
tudinal wave motion and the other governing shear wave
motion (Landau and Lifshitz 1986). Only the shear wave
equation is chosen for consideration for the following
reasons. First, the longitudinal waves have wavelengths
much larger than organs of interest at the frequencies
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used in sonoelastography (Parker et al. 1992). Addition-
ally, biological tissues are nearly incompressible, so the
Poisson’s ratio approaches 0.5 (Fung 1981; Parker et al.
1990). At this Poisson’s ratio, the wave dilation repre-
senting the longitudinal wave motion is close to zero.
Thus, the shear wave motion uS dominates the wave
propagation. In a homogeneous medium, the shear wave
component is described by the wave equation (Landau
and Lifshitz 1986):

"2u!S #
1
cS

2

&2u!S

&t2 $ 0, (2)

where cS denotes the shear wave velocity expressed as:

cS $! E
2%(1 ! v)

. (3)

Furthermore, if we consider propagating shear waves in
soft tissue (i.e., incompressible medium) then eqn 3 can
be further simplified to:

cS $! E
3%

, (4)

which relates the shear wave velocity to the Young’s
modulus and mass density of a homogeneous tissue
sample.

Sonoelastographic imaging
In sonoelastography, a low frequency (50 to 400

Hz) and low amplitude (20 to 100 'm) mechanical
vibration is employed to noninvasively excite shear
waves in tissue. Assuming that the external vibration has
harmonic temporal and spatial dependence (and neglect-
ing attenuation), the resulting shear wave displacement
vector can be expressed as:

uS $ uexp(ikSx ! i(St), (5)

where u is the vibration amplitude of the displacement
field, (S is the angular vibration frequency and kS rep-
resents the shear wave number. Premised on the tissue
response from propagating shear waves, elasticity infor-
mation can be estimated in depth using Doppler ultra-
sonic techniques. Specifically, the Doppler shift of an
ultrasonic wave scattered from a spatially oscillating object
(tissue volume) is given by a Fourier-Bessel series of
equally spaced harmonics above and below the Doppler
carrier frequency (Huang et al. 1990). It has been shown
that the vibrational amplitude of tissue scatterers in
sinusoidal motion alters the power spectrum of an insoni-
fying ultrasound beam in a predictable manner. In particu-
lar, a linear relationship exists between the vibrational

amplitude u and the standard deviation of the power
spectrum ) as follows (Huang et al. 1990):

) $ "2
u(S(L

cL
, (6)

where (L is the radian frequency of the ultrasound wave
and cL is the longitudinal wave velocity in the material
being imaged (assumed constant at 1540 m/s). Equation
6 forms the basis of sonoelastographic imaging. Using a
modified pulsed Doppler ultrasound system, local esti-
mates of tissue elasticity can be estimated and imaged in
real-time to reflect changes in deep tissue stiffness
(Parker et al. 1998). In practice, when a region-of-tissue
contains a stiff lesion or mass, a local decrease in peak
vibrational amplitude results. The interested reader is
referred to Taylor et al. (2000) for a comprehensive
description of the Doppler signal processing techniques
utilized in real-time sonoelastographic imaging.

Shear wave interference patterns
We begin by considering two (equal amplitude)

shear wave excitation sources positioned transversely on
opposite sides of a medium and separated by distance D.
Note that in the equations to follow, shear wave excita-
tion source one and two are located at positions !D/2
and D/2, respectively. If one of the two sources vibrates
at frequency (S and the other source vibrates at (S "
#(S, where #(S * (S, then the propagating shear waves
can be expressed as follows (Wu et al. 2004):

u1(x, t) $ A exp##+$x !
D
2 %&exp#ikS$x !

D
2 %! i(St&,

(7)

u2(x, t) $ A exp##+$D
2

# x%&exp#i(kS ! ,kS)$D
2

# x%
! i((S ! ,(S)t&, (8)

where u1 and u2 are the instantaneous right and left
propagating waves, respectively, A is the source ampli-
tude, + is the shear wave attenuation coefficient, #ks is
the shear wave number difference and x is the spatial
variable (parallel to the propagating shear wave axis).
The interference pattern U is the superposition of the two
waves described by eqn 7 and eqn 8:

U(x, t) $ u1(x, t) ! u2(x, t), (9)

and describes the coupled shear wave displacement field
(neglecting boundary reflections). It is important to note
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that if the shear wave sources are far away compared
with the size of the field of view, then the waves from
each source can be considered plane waves (Wu et al.
2006). Thus, eqn 9 may be expressed as:

U(x, y, t) $ u1(x, t) ! u2(x, t). (10)

where y is the spatial variable orthogonal to the shear
wave propagation axis. Equation 10 indicates that for a
homogeneous medium the shear wave interference pat-
terns can be regarded as a set of harmonic signals inde-
pendent of the y-dimension. Furthermore, owing to the
frequency difference between the sources, the shear
wave interference patterns move slowly toward the
source with the lower frequency and at an apparent
velocity equal to #(S/2(S!cs (Wu et al. 2004). These
propagating shear wave interference patterns have been
appropriately termed crawling waves.

In sonoelastography, it is the magnitude of a vibrat-
ing target that is imaged. Therefore, eqn 10 is expressed
alternatively as:

-U(x, y, t)-2 $ 'u1(x, t) ! u2(x, t)( ! 'u1
!(x, t) ! u2

!(x, t)(,

(11)

where u! is the complex conjugate of u and the squared
operator is used to recover a mathematical expression for
a harmonic signal. Inserting eqn 7 and eqn 8 into eqn 11
and simplifying the expression yields the following:

-U(x, y, t)-2 $ 2A2exp(#+D)'cosh(2+x) ! cos(2kSx

! ,kSx ! ,(St)(. (12)

Inspection of the right-hand harmonic term reveals that
the spatial frequency of the shear wave interference
pattern is approximately twice the frequency of the vi-
brating sources. Finally, sampling of the crawling wave
displacement field described by eqn 12 results in the
following digitized signal:

s(m, n, r) $ 2A2 exp(#+D)'cosh(2+mTm) ! cos(2kSmTm

! ,kSmTm ! ,(SrTr)(, (13)

where m, n and r are integer values, Tm denotes the
spatial sampling interval along the shear wave propaga-
tion axis and Tr is the temporal sampling interval (typi-
cally referred to as the frame rate).

Shear velocity estimation
In regards to eqn 13, the shear wave velocity can be

found by taking the spatial derivative of the phase argu-

ment along the shear wave propagation axis (assumed to
be m) as follows:

&.

&m
$

&(2kSmTm ! ,kSmTm)
&m

.

$(2kS ! ,kS)Tm

(14)

By noting the following expressions:

kS $
2/fS

cS
,

and

,kS $
2/,fS

cS
,

where fS $ (S ⁄ 2/ and ,fS $ ,(S ⁄ 2/, then eqn 14 can
be rewritten as a function of the shear velocity:

&.

&m
$

2/(2fS ! ,fS)Tm

cS
. (15)

Typically, only discrete spatial data are available for
analysis and this implies that only an approximation to
the derivative in eqn 15 can be computed. One common
approach to this estimation problem is the autocorrela-
tion-based technique described by Kasai et al. (1985).
For the interested reader, a more elaborate description of
Kasai’s estimator can be found in Jensen (1996). How-
ever, this approach requires complex data sequences.
Considering the discrete-time displacement field de-
scribed by eqn 13, the analytic shear wave displacement
field sA can be accurately computed using fast Fourier
transform (FFT) techniques (Marple 1999). Therefore,
using a kernel widow size of N data samples the normal-
ized autocorrelation function at lag 1 can be approxi-
mated as:

R̂(1) $
1

N # 1 )
z$1

N#1

sA
!(z)sA(z ! 1), (16)

where the data segment is taken parallel to the crawl-
ing wave propagation axis. Given the discrete auto-
correlation estimates of eqn 16, the phase derivative is
described as follows:

&.

&m
$ tan#1#!*R̂(1)+

"*R̂(1)+&, (17)

where !*●+ and "*●+ denotes the imaginary and real
parts, respectively. Combining eqn 17 and eqn 15 and
rearranging the terms results in the following expression:
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cS $
2/(2fS ! ,fS)Tm

tan#1#!*R̂(1)+
"*R̂(1)+&

, (18)

which indicates that the shear velocity can be estimated
from the spatial interference (or crawling wave) patterns
given a priori knowledge of the source vibration fre-
quencies and spatial sampling rate. In practice, a kernel
window of length N is translated across the image plane
(or region-of-interest) in the direction of shear wave
propagation with local shear velocity estimates obtained
for each spatial position using eqn 18. The resultant data
matrix is imaged and describes the 2D spatial shear
velocity distribution. One of the main advantages to the
shear velocity estimation technique described above re-
lates to computational simplicity. Due to the undemand-
ing numerical structure (comparable to conventional
Doppler color flow processing), real-time sonoelasto-
graphic imaging of shear velocity distributions is deemed
feasible.

SIMULATIONS

Methods
To evaluate the new shear velocity estimation tech-

nique, a 1D sonoelastographic simulation program was
developed using Matlab 7.0 (Mathworks, Inc., Natick,
MA, USA). The model assumes plane wave conditions

Fig. 1. Simulated shear wave interference pattern (i.e., one-
dimensional displacement vector) for a pair of coherent exci-
tation sources separated laterally by a distance of 50 mm and
vibrating at 200 Hz. A shear wave attenuation of 0.25 cm!1

was assumed.
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Fig. 2. Estimated vs. true shear velocity response in simulation
for attenuation compensation via amplitude normalization and

highpass spatial filtering.
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Fig. 3. Estimated vs. true shear velocity response in simulation
for kernel window sizes of 8, 16 and 32 samples.

Table 1. Default values used for simulation studies

Parameter Value

Vibration source seperation (D) 50 mm
Attenuation coefficient 0.25 cm!1

Vibration frequency (f) 200 Hz
Spatial sampling interval (Tn) 0.4 mm
Quantization levels (QLVL) 8-bit
Signal-to-noise ratio (SNR) 30 dB
Kernel size (N) 16 samples
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and that the instantaneous shear wave interference pat-
terns (i.e., shear wave displacement vector) propagating
in a locally homogeneous and isotropic medium can be
described by eqn 13. Without loss of generality, we set
#k in eqn 13 to zero, which is indicative of a static shear
wave interference pattern possessing the same intrinsic

tissue elasticity information as the crawling wave case
(Wu et al. 2004). For all results the shear wave signal-
to-noise ratio (SNR) was implemented by superimposing
white Gaussian noise (at the specified level) onto the
simulated shear wave interference patterns. All shear
velocity estimates were computed using eqn 18 and
plotted as a function of the true shear velocity values
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Fig. 4. Estimated vs. true shear velocity responses in simulation
plotted as a function of the vibration frequency, namely, 150,

200, 250 and 300 Hz.
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Fig. 5. Estimated vs. true shear velocity responses in simulation
plotted as a function of shear wave signal-to-noise ratio (SNR),

namely, 20, 30 and 40 dB.
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Fig. 6. Estimated vs. true shear velocity responses in simulation
plotted as a function of intensity quantization levels, namely,

4, 8 and 16-bit.

Fig. 7. Illustration of experimental set-up used to produce
crawling waves in phantoms. Two piezoelectric shear wave
sources (a) are in contact with the phantom (b) with arrows
indicating the motion vectors. Shear wave displacement fields
are imaged using an ultrasound probe (c) as they propagate into

the medium.
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used to simulate the displacement fields. Statistical re-
sults in simulation were computed from 25 independent
realizations. Default simulation parameters are listed in
Table 1 unless otherwise stated.

Results
A typical simulated shear wave interference pattern

is illustrated in Fig. 1. Specifically, the shear velocity of

the material was assumed to be 3 m/s and the wavelength
was measured to be 7.5 mm, indicating that the spatial
frequency is 400 Hz. Hence, the spatial frequency is
twice the source excitation frequencies with the interfer-
ence pattern superimposed on a hyperbolic cosine func-
tion. The effect of this hyperbolic profile is a biasing of
the shear velocity estimates since it effectively intro-
duces a low frequency signal component. Therefore,

Fig. 8. Experimental shear wave interference pattern results using homogeneous phantoms of relatively (a) low and (c)
high elastic moduli (using shear wave vibration frequencies of 150, 200, 250 and 300 Hz, left to right, respectively). The
matched shear velocity images (units of m/s) are depicted in (b) and (d), respectively. Notice that an increase in the
material elastic modulus corresponds to an increase in shear velocity estimates and is independent of vibration

frequency.
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attenuation compensation via highpass spatial filtering or
amplitude normalization using eqn 13 must be employed
to maximize shear velocity estimator performance. Re-
garding the former, filtering is performed by suppressing
the first two Fourier series coefficients when computing
the analytic data sets and before shear velocity estima-
tion. Results demonstrating both attenuation compen-
sation approaches are illustrated in Fig. 2. As illustrated,
shear velocity estimates closely match that of the true
shear velocity in the range of 1 to 10 m/s albeit the
filtering approach to attenuation compensation produces
more estimation variability for higher shear velocities.
Consequently, attenuation compensation using amplitude
normalization will be utilized for all simulation results to
follow.

The effect of kernel size on shear velocity estimates
is illustrated in Fig. 3. Note that kernel size is analogous
to packet size or ensemble length in conventional Dopp-
ler color flow imaging. As the results demonstrate, in-
creasing the kernel window size reduces estimator vari-
ability. Since shear velocity estimates are obtained by
spatially translating the kernel window throughout the
region-of-interest, a fundamental trade-off exists in that
increasing the window size to minimize estimator vari-
ance decreases the spatial resolution. The results of
Fig. 4 describe the effects of vibration frequency on
shear wave velocity estimator performance. Notice that
as the source vibration frequency is increased, the shear
velocity estimates exhibit less variability because for a
given kernel window size more waveform activity is
observed. In practice, higher vibration frequencies are
more attenuated effectively reducing the SNR. Therefore,
the results of Fig. 5 illustrate the effect of shear wave
SNR on shear velocity estimator performance. As the
signal noise levels increase, there is a corresponding
degradation in estimator performance. Specifically, sim-
ulation results demonstrate that for a 20 dB noise level,
the shear velocity estimates tend to underestimate the
higher true shear velocities in addition to exhibiting unac-
ceptable levels of variability. Hence, maximizing the shear
wave SNR is of paramount importance. In practice, this can
be accomplished by increasing the vibrational amplitude of
the shear wave excitation sources.

The number of quantization levels for any given
imaging technique determines the display resolution. The
role of quantization on shear velocity estimator perfor-
mance in depicted in Fig. 6. Although 4-bit amplitude
quantization introduces a relatively higher degree of
variance on the shear velocity estimates compared with
that obtained using both 8-bit and 16-bit quantized data,
the latter two demonstrate comparable results. Since
lower quantization levels are associated with higher lev-
els of quantization noise, it is shown that minimizing this

noise source has inherent advantages on estimator per-
formance.

EXPERIMENTS

Methods
In the validating experiments, two bending piezo-

electric elements termed biomorphs (Piezo Systems,
Cambridge, MA, USA) are applied as the vibration
sources. A dual channel signal generator (Model
AFG320, Tektronix, Beaverton, OR, USA) produces two
monochrome low frequency signals that are slightly off-
set (typically less than 0.5 Hz). These signals are passed
through a two channel amplifier before being input to the
biomorphs. A LOGIQ 9 scanner (General Electric Med-
ical Systems, Milwaukee, WS, USA) that has been mod-
ified for sonoelastography was used with a M12L linear
array probe (5 to 13 MHz bandwidth) for real-time
visualization of the propagating crawling waves (i.e.,
shear wave interference pattern motion). The frame rate
for the sonoelastographic system is typically greater than
12 frames per s and dependent on the scanning field of
view. This unit allows access to the demodulated data
sets that were stored and transferred to an external com-
puter for processing. A schematic drawling of the exper-
imental set-up is illustrated in Fig. 7.

In the first set of experiments, two homogeneous
tissue mimicking phantoms (10 $ 10 $ 10 cm) of

Fig. 9. Matched shear velocities as estimated from sequences of
shear wave interference sonoelastograms and sets of physical
measurements (i.e., time-of-flight). Statistical results were ac-
quired as a function of shear wave vibration frequency and
from the relatively soft (Phantom A) and hard (Phantom B)

homogeneous phantoms.
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different stiffness were evaluated. Shear wave velocities
for the two respective phantoms were estimated using
time-of-flight methods (Wu et al. 2004). The purpose of
this experimental component was to assess and compare
shear velocity imaging results to measured values. In the
second experiment, a heterogeneous tissue mimicking
phantom (13 $ 13 $ 8 cm) containing a 1 cm (in
diameter) stiff circular inclusion was utilized for a pre-
liminary assessment of shear velocity image contrast.
Mechanical measurements were performed on both
background and inclusion samples to obtain elastic mod-
ulus values (Taylor et al. 2001) where the elastic mod-
ulus is related to the shear velocity via eqn 3. Note we
assume a mass density of the tissue-mimicking samples
equal to that of water. Phantoms were gelatin-based and
made using techniques described previously by Hall et al.
(1997). For all experimental scans, a sequence of 25 crawl-
ing wave sonoelastograms was obtained and the corre-

sponding shear velocity images were generated and aver-
aged. Image regions were analyzed for statistical purposes.

Finally, the proposed imaging technique was used
to obtain a sonoelastographic shear velocity image from
an excised prostate gland obtained immediately follow-
ing radical prostatectomy on a 55-y-old patient. The
excised specimen was embedded in an agar mold (Taylor
et al. 2005) and, subsequently, imaged using the same
experimental set-up described above for the phantom
studies. The final diagnosis was obtained from the sur-
gical pathology report. The prostate was chosen as a
target organ because of its clinical significance and for
our goal of visualizing focal lesions in tissue using
sonoelastographic methods. Note that tissue specimen
use was approved by our institutional review board and
was compliant with the Health Insurance Portability and
Accountability Act (HIPAA). Informed consent was ob-
tained for the use of the excised gland.

Fig. 10. Experimental crawling wave results using heterogeneous phantom and vibration sources of 200 and 200.15 Hz.
Results depict the matched (a) B-mode ultrasound image, (b) Sonoelastogram and (c) Shear velocity images (units of m/s).
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For all experimental results, shear wave attenuation
effects were minimized by suppressing the first two
Fourier series coefficients when computing the analytic
image sets and before shear velocity estimation. This
approach is analogous to highpass filtering and is imple-
mented efficiently.

Results
The results of Fig. 8 illustrate the crawling wave

sonoelastograms and matched shear velocity images for
the two homogeneous phantoms. For a given vibration
frequency, the spatial frequency of the harder phantom
(Fig. 8c) is lower compared with the softer phantom
(Fig. 8a), thus, indicating an increase in the true shear
velocity distribution. Corresponding shear velocity images

for the soft and hard phantoms are depicted in Fig. 8b and
d, respectively. Notice that an increase in phantom stiff-
ness corresponds to an increase in shear velocity esti-
mates and is independent of vibration frequency, al-
though at higher vibration frequencies, the shear velocity
images exhibit artifacts that are attributed to increased
attenuation effects that were not compensated for using
amplitude normalization. Statistical results were ob-
tained from these phantoms and compared with mea-
sured shear velocities, Fig. 9. As these results demon-
strate, the shear velocity images closely match the true
distribution, across a range of frequencies from 150 to
300 Hz.

Results from the heterogeneous phantom are illus-
trated in Fig. 10. Although not evident from crawling

Fig. 11. Experimental crawling wave results for in vitro prostate using vibration sources of 240 and 240.15 Hz. Results
depict the matched (a) B-mode ultrasound image, (b) Sonoelastogram and (c) Shear velocity image (units of m/s). Notice
that (c) depicts two distinct regions (left and right at the mid-gland level) of elevated shear velocities, which was

confirmed as focal carcinomas by pathologic assessment and not evident in the B-mode ultrasound image.
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wave sonoelastogram, the shear velocity image depicts a
high contrast inclusion, which agrees with that observed
in the ultrasound B-mode image. Mechanical measure-
ments from phantom samples revealed a shear velocity
contrast of 1.48 (i.e., elastic modulus contrast of 2.2).
Analysis of the shear velocity image indicates a shear
velocity contrast of 1.5, which agrees with the mechan-
ical measurements.

Experimental shear velocity imaging results for the
in vitro prostate case are depicted in Fig. 11. Results
show the matched B-mode ultrasound image (Fig. 10a),
crawling wave sonoelastogram (Fig. 10b), and shear
velocity image (Fig. 10c). Notice that the shear velocity
image indicates two distinct regions in the left and right
gland of elevated shear velocity, which are not visualized
on the B-mode ultrasound image. The pathology report
confirmed these two regions as focal carcinomas. Since
histologic cross-sections were not available for this pros-
tate case, no detailed information regarding tumor size
can be cited.

CONCLUSIONS

In this paper, we introduced a novel sonoelasto-
graphic technique for estimating local shear velocities
from moving shear wave interference patterns termed
crawling waves. By estimating the phase derivative
along the shear wave propagation axis for a given image
plane and kernel size (conventionally orthogonal to the
Doppler ultrasound scan direction), shear velocity distri-
butions can be quantified to reflect the true underlying
tissue elasticity information. Although not a prerequisite,
the use of crawling waves (i.e., temporally varying spa-
tial patterns) allows visualization of the dynamic behav-
ior of propagating shear wave and, subsequently, shear
velocity image averaging to reduce noise levels.

Simulation results analyzed the fundamental trade-
offs between various system level parameters and imag-
ing conditions. Specifically, increasing the kernel win-
dow size (analogous to Doppler color flow processing)
reduces shear velocity estimator noise but compromises
spatial resolution due to the moving window estimation
approach. Increasing the source vibration frequency was
shown to reduce estimator variance but shear wave at-
tenuation also increases at higher vibration frequencies
owing to viscoelastic effects. Thus, a fundamental trade-
off exists for practical applications. Since attenuation
effectively reduces the shear wave SNR, the latter was
also assessed in simulation. As the results revealed,
lower SNR levels produced substantial variability in the
derived shear velocity estimates. Fortunately, in practice
the shear wave SNR can be improved to an extent by
increasing the vibrational amplitude of the sources. The
effects of amplitude quantization were evaluated and the

results indicated that four-bit display resolution produced
more variability in the shear velocity estimates than that
obtained using either eight-bit or 16-bit quantization (the
last being the most accurate). Despite this fact, results
indicate that any of the display resolutions evaluated are
acceptable for shear velocity estimation. Hence, many of
the ultrasound scanners equipped with Doppler color
flow imaging and routinely used today could be modified
to perform real-time shear velocity imaging.

Results from homogeneous phantoms demonstrated
the ability of sonoelastographic shear velocity imaging to
quantify the true underlying shear velocity distributions
as verified using time-of-flight measurements. Further-
more, heterogeneous phantom results revealed the capac-
ity for lesion detection (1 cm diameter inclusion) and
shear velocity quantification as validated from mechan-
ical measurements on phantom samples. Experimental
results obtained from a prostate specimen illustrated fea-
sibility for shear velocity imaging in tissue. More impor-
tantly, high-contrast visualization of focal carcinomas
was demonstrated introducing the clinical potential of
this novel sonoelastographic imaging technique.
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